



Graph
$$x = y^2 + 4y + 4$$

 $x = ay^2 + by + C$
 $a = 1 \rightarrow opens$ to the right
 $b = 4$ $K = \frac{b}{2a} = \frac{-4}{2(1)} = \frac{-4}{2} = -2$
 $C = 4$ $h = plug$ in K
 $h = (-2)^2 + 4(-2) + 4 = 0$
Vertex $(h, K) = (0, -2)$
 $A.O.S.$ $Y = K$ $Y = -2$
 $X-Int(4,0)$
Domain: $[0,\infty)$
Range (∞,∞)

Sind

1)
$$6! = 6.5.4.3.2.1 = 720$$

2) $8^{\circ} = \frac{8!}{5! \cdot (8-5)!} = \frac{8!}{5! \cdot 3!} = \frac{8 \cdot 7 \cdot 6 \cdot 5!}{8! \cdot 3 \cdot 2 \cdot 1} = \frac{56}{1} = \frac{56}{1}$

3) $6^{\circ} = \frac{6!}{(6-3)!} = \frac{6!}{3!} = \frac{6 \cdot 5 \cdot 4 \cdot 3!}{3!} = 6 \cdot 5 \cdot 4 = 120$

4) $(9) = 9^{\circ} = \frac{9!}{4! \cdot (9-4)!} = \frac{9!}{4! \cdot 5!} = \frac{9 \cdot 8 \cdot 7 \cdot 6 \cdot 5!}{4! \cdot 5!} = \frac{9 \cdot 2 \cdot 7}{1} = 126$

Binomial Expansion

$$(a+b)^{n}$$
, $a+b \neq 0$, n is whole number

 $(a+b)^{n}$, $a+b \neq 0$, n is whole number

 $(a+b)^{n}$, $a+b \neq 0$, n is whole number

 $(a+b)^{n}$, $a+b \neq 0$, $a+b \neq$

Expand
$$(a+b)^6$$

- 7 terms

- $Deg. of each term = 6$
 $(a+b)^6$
 $(a+b)^6$
 $(a+b)^6$

- $a+b$
 $(a+b)^6$

- $a+b$
 $(a+b)^6$

- $a+b$

-

Sind the First 4 terms of
$$(x^3 + 2)^{10}$$

 $(a+b)^{0}$
 $(a+b)^{0}$

Find the First 3 terms of
$$(2x)^6$$

 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^6$
 $(0.7)^$

How to Sind (K+1)th term of
$$(a+b)^n$$

$$\begin{pmatrix} n \\ k \end{pmatrix} a^{n-k} b^k$$
Sind the 4th term of $(a+b)$

$$k+1=4 \quad k=3 \quad 84 \quad a^6 \quad b^3$$
Find the 6th term of $(a+b)^n$

$$k+1=6 \rightarrow k=5 \quad (a+b)^n$$

$$k+1=6 \rightarrow k=5 \quad (a+b)^n$$

Find the 8th term of
$$(a+b)^{10}$$
 $K+1=8$
 $K=7$
 $(7)0^3b^7=1200^3b^7$

Sind the 4th term of $(x^5+2)^3$

4th term of $(a+b)^8$
 $(a+b)^8$

Sind the 6th term of
$$(x^4 - y^3)^{11}$$

6th term of $(x^4 - y^3)^{11}$
 $(x^4 - y^3)^{11}$

Sind the 5th term of
$$(\frac{1}{2}x - 4y^2)^{10}$$
 $0 = \frac{1}{2}x$

5th term of $(\frac{1}{2}x)^{10}$
 $0 = \frac{1}{2}x$
 $0 = \frac{1}{2}x$

$$\sum_{n=1}^{5} (2n+1) = (2\cdot1+1) + (2\cdot2+1) + (2\cdot3+1) + (2\cdot4+1) + (2\cdot3+1) + (2\cdot4+1) + (2\cdot5+1)$$

$$= 3 + 5 + 7 + 9 + 11$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$= 35$$

$$\frac{5}{i=1}$$

$$= (1^3 - 1^2) + (2^3 - 2^2) + (3^3 - 3^2) + (4^3 - 4^3) + (5^3 - 5^2)$$

$$= 0 + 4 + 18 + 48 + 100$$

Final Exam!

1) June 2,2022, 7:00-9:00, Thursday

You can arrive early (6:30 Am) and

Stay as late as (10:00 Am) (You must arrive mo later

- 2) Same Process as exams I & 2. than 7:20.
- 3) No emails after the final until You hear From me.
 - 4) Review notes, class quizzes, SQ, and exams.
 - 5) No more lectures, but I hold my office hrs.